МОДЕЛИРОВАНИЕ РАБОТЫ ПРОДУКТОВЫХ КОМАНД С ПОМОЩЬЮ СИСТЕМЫ УПРАВЛЕНИЯ ЗАДАЧАМИ

Матафонов Д.С., аспирант,

Уральский федеральный университет имени первого Президента России Б. Н. Ельцина, г. Екатеринбург, Россия

Аннотация. Рассматривается использование системы управления задачами как платформы организационного моделирования продуктовых команд. Для анализа и прогнозирования предлагается использовать модели разного уровня. Методология включает формальные требования к сбору данных и предусматривает разработку автоматизированного модуля для выявления системных недостатков и проактивного управления производительностью.

Ключевые слова: управление организационными системами, системы управления задачами, моделирование команд, YouTrack, метрики разработки, искусственный интеллект, поддержка принятия решений.

Разработка программных продуктов характеризуется высокой степенью динамичности и неопределенности. Управление такой системой требует не только оперативного реагирования на инциденты, но и выявления недостатков, имеющих системный характер. Основанные на опыте и интуиции решения могут оказаться неэффективными ввиду сложности организационных систем, объединяющих команды, процессы и артефакты. Системы управления задачами (трекеры), такие как Jira или YouTrack, становятся не только инструментами оперативного управления, но и источником объективных данных о функционировании организационной системы. Принятие решений на основе этих данных требует систематического подхода.

В статье предлагается формализованная методология использования данных систем управления задачами для построения моделей организационной динамики, позволяющих анализировать и прогнозировать работу продуктовых

команд. Необходимо выявить ключевые метрики и требования к их сбору, обосновать выбор теоретических моделей и подготовить их интерпретацию.

Для обеспечения репрезентативности анализа необходимо соблюдение требований к ведению системы управления задачами.

Структурная целостность данных достигается:

- Наличием обязательного атрибута «Команда» для идентификации организационной единицы;
- Единой системой типов задач (предлагается «Пользовательская история», «Техническая задача», «Баг»);
- Регламентированным набором статусов задач (от запланированной до завершенной);

Необходимое для определения производительности время измеряется на основе статусов, поэтому задачи должны перемещаться по ним в соответствии с реальным прогрессом и по возможности автоматически; устанавливается запрет на возвратные операции (завершенная задача не может быть взята в работу).

На основе собранных данных формируются следующие метрики:

- Пропускная способность количество задач, завершенных за единицу времени;
 - Структура потока работ соотношение типов задач;
- Время активной работы время от начала активной работы над задачей до завершения;
- Диаграмма совокупного потока визуализация количества задач в каждом статусе [1].

Полученные метрики позволяют прогнозировать работу команд.

Рабочий процесс можно представить упрощенно как детерминированный поток. Тогда прогнозируемое время можно представить как $T=\frac{N}{V}$, где T- прогнозируемое время, N- объем списка задач на установленный промежуток работы, V- средняя историческая пропускная способность. Такая модель

применима в условиях стабильной системы, не отличающейся значительными различиями в сложности задач и пропускной способности.

Такая модель применима для долгосрочного прогнозирования освоения списка задач, выявления значительного дисбаланса загрузки между командами. Однако она не учитывает стохастическую природу потока работ и времени выполнения отдельных задач, что приводит к значительным погрешностям при краткосрочном планировании. Использование такой модели оправдано в силу простоты и наглядности для первоначальной оценки.

Учесть стохастическую природу разработки позволяют модели, основанные на теории очередей и вероятностном распределении [4]. Например, с помощью метода Монте-Карло имитируется выполнение текущего списка задач, результатом чего выступает срок выполнения конкретных инициатив или всех задач. Такая модель позволяет получать вероятностные прогнозы (например, с вероятностью 85% все задачи будут завершены в течение 30–35 дней»). Она учитывает основную причину неопределенности планирования – вариабельность времени выполнения, когда наличие даже невысокой доли задач с аномально высоким временем выполнения может кардинально менять прогнозы.

Логическим продолжением увеличения возможностей прогнозирования является применение предиктивных моделей на основе методов искусственного интеллекта (ИИ). В отличие от предыдущих моделей, ИИ-модель на основе многомерного анализа атрибутов не экстраполирует общую статистику, а строит прогноз для каждой конкретной задачи. Данный подход основан на гипотезе о том, что выполнение задачи определяется скрытыми закономерностями. Именно их выявление позволяет предоставить рекомендации по организационному вмешательству. Однако для эффективной работы таких моделей требуется большой объем размеченных исторических данных [3].

Предлагается применение ИИ для прогноза времени выполнения отдельной задачи: на основе типа, текстового описания (с помощью обработки естественного языка – NLP), связанных компонентов, исполнителя и других

факторов. Также этот метод находит применение в классификации рисков и оптимизации распределения задач.

Представленные три класса моделей образуют иерархию. Детерминированная модель служит для базового мониторинга и выявления крупных проблем. Стохастическая модель используется для верификации этих предположений в условиях неопределенности. Предиктивные ИИ-модели предлагают точный инструмент для работы с конкретными задачами и проактивного управления рисками.

Полученные с помощью моделей прогнозы являются основой для принятия решений. Например, если детерминированная модель показывает двукратное отставание одной команды, необходимо проанализировать полученную ранее структуру потока работ. Решение может заключаться не в увеличении численности команды, а в пересмотре зоны её ответственности.

Если стохастическая модель демонстрирует высокую изменчивость времени активной работы, можно выдвинуть гипотезу: в системе присутствуют неконтролируемые помехи, такие как постоянная срочность задач, ожидание внешних зависимостей, стабильно высокий объем незавершенной работы. Следовательно, необходимо вмешательство: возможно внедрение пределов объема незавершенной работы, оптимизация процессов интеграции и декомпозиции задач.

Предлагается создание автоматизированного модуля для организационного моделирования средствами YouTrack, обладающего развитым REST API и платформой для разработки плагинов [2]. Функциональность такого модуля включает автоматический сбор, агрегацию и визуализацию метрик, реализацию прогностических моделей и систему оповещений. В отличие от стандартных отчетов YouTrack, собственный модуль позволяет внедрить модель ИИ. Эффективность такого модуля напрямую зависит от соблюдения требований ведения YouTrack. Задача модуля — не заменить управленца, а предоставить ему своевременные данные и рекомендации для принятия решений.

Предложенная методология позволяет использовать систему управления YouTrack не только как инструмент учета, но и как платформу для организационного моделирования. Соблюдение требований к сбору данных обеспечивает адекватность метрик, а использование взаимодополняющих моделей, от простой детерминированной до основанных на ИИ, позволяет адекватно описывать и прогнозировать поведение организационной системы. Данный подход предлагает руководителю обоснованный аппарат для выявления системных недостатков, проактивного управления производительностью и обоснованных экспериментов с организационной структурой при помощи автоматизированного модуля.

Литература

- 1. Баранов, С. Н. Метрическое обеспечение программных разработок / С. Н. Баранов, А. М. Тележкин // Труды СПИИРАН. 2014. № 5(36). С. 5–27.
- 2. Кущенко, А. Е. Разработка инструмента для извлечения и анализа моделей процесса разработки програмного обеспечения / А. Е. Кущенко, А. В. Самочадин // Математические методы в технологиях и технике. 2021. № 8. С. 79—84.
- 3. Мирзаянц К. Искусственный интеллект в управлении проектами: тренды, возможности, первый опыт / Мирзаянц К., Воробьева О., Головина О. // Бюллетень Удмуртского университета. Серия Экономика и право. 2025. Т. 35, № 4. С. 615–621. // Вестник Удмуртского университета. Серия Экономика и право. 2025. Т. 35, № 4. С. 615–621.
- 4. Obaid A., Al-Husseini K. Monte Carlo simulation for risk management in agile software development // International Journal of Computers and Informatics. 2024. Vol. 3, No. 3. P. 63–78.